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High-speed digital computing methods are applied to the study of the statistical 
behaviour of turbulent velocity derivatives in a nearly isotropic turbulent 
field downstream of a grid. Higher-order correlations of turbulent velocity gradi- 
ents, up to the eighth order, are measured. Contrary to the case of Velocities, 
the higher even-order correlations of velocity gradients more clearly evidence the 
departure from a two-dimensional Gaussian probability distribution. Using non- 
Gaussian probability distribution laws the relations between different odd- 
and even-order correlations are obtained and compared with the experimental 
measurements. The conditions of similarity and isotropy are evaluated for the 
small-scale structure as evidenced by the behaviour of the turbulent velocity 
gradients. The concept of intermittency of the small-scale structure is also 
discussed. 

1. Introduction 
Even the most simple case of homogeneous and isotropic turbulence still 

requires extensive research, both theoretical and experimental. The study of 
turbulence in shear flows, such as the flow over a flat plate, or the study of atmo- 
spheric turbulence, is considerably more complicated and a better understanding 
of the structure of turbulence under idealized conditions is a necessary require- 
ment for further progress. It is with this point of view that a long-range research 
investigation into the statistical characteristics of turbulent fields has been under- 
taken to provide significant data which would be of importance in understanding 
their microstructure. The application of high-speed digital computing methods 
to the measurement of turbulence has made it possible to obtain data hitherto 
not readily available, and therefore, permits a more thorough exploration of 
experimental results and their theoretical consequences. Our previous studies of 
grid turbulence, using these techniques (Frenkiel & Klebanoff 1967a, b) ,  have 
emphasized measurements of higher-order correlations of turbulent velocities 
and the degree t o  which these measurements are consistent with the assumptions 
of Gaussian Probability density distribution and isotropy. 
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In the present paper the small-scale structure of the turbulence is investigated 
by applying a similar approach to  the turbulent velocity gradients. I n  addition, 
an important aspect of the small-scale structure of turbulence is the question 
of intermittency. This question has been receiving more attention recently, both 
theoretical and experimental, particularly in connexion with the study of atmo- 
spheric and oceanographic turbulence. The presently unsettled situation in re- 
gard to  the nature of intermittency, and the lack of an adequate evaluation of 
similarity for the small-scale structure, emphasize the need for further experi- 
mental investigation. 

2. Experimental procedure 
The present investigation was carried out in the nearly isotropic turbulence 

field generated by a square-mesh grid woven of iron rods, 0.5 cm in diameter, 
and a mesh, M ,  of 2.54 cm. The grid was placed perpendicular to  the flow at the 
beginning of the test section of the 1.37 m wind tunnel a t  the National Bureau 
of Standards. The measurements presented were made at different distances, 
X ,  downstream of the grid, a t  48.5 mesh-lengths and a t  174.4 mesh-lengths, a t  
a wind velocity, U ,  of approximately 15.2 mlsec. Measurements were also made 
a t  - the 48.5 mesh-length position a t  a wind velocity of 7.6 mlsec. The intensity, 
(uZ)*/U, of the longitudinal component of the turbulent velocity u, the Taylor 
microscale, A, and the associated turbulence Reynolds number 

- 

(u2)i h R"=-' 

where v is the kinematic viscosity corresponding t o  the foregoing experimental 
conditions, are given in table 1. 

- 

U (m* 4 M  
XllM cm/s U ( M  = 2.54om) R A 

37.7 48.5 759 0.0185 0.180 
45.2 174.4 1564 0.00722 0.250 
60.8 48.5 1518 0.0186 0.137 

TABLE 1 

Instrumentation combining analog and digital methods, similar to that 
described previously (Frenkiel & Klebanoff 1967 a)  was used. Constant-current 
hot-wire anemometry with compensated turbulence-measuring equipment was 
employed. The hot wires were platinumwires, 2.5 ,u in diameter and 0-75 mm long. 
The fluctuating voltages corresponding to  the longitudinal turbulent velocity, 
u(t), and its first and second time derivatives, duldt,  d2u/dt2, were recorded 
simultaneously on magnetic tape, a t  a tape speed of 152.4 cmlsec using an Ampex 
CP-100 multichannel tape recorder. A timing signal of 12 800 Hz was simul- 
taneously recorded on another channel. The analog tape was then digitized, 
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and the digital tapes were processed, using the computer facilities of the Compu- 
tation and Mathematics Department, Naval Ship Research and Development 
Center. The analog data were digitized a t  a rate of 12 800 per second yielding 
samples of digitized data corresponding to analog recordings of approximately 
12.5 seconds in duration. Digitizing was also carried out at  the rate of 64 000 per 
second (with corresponding shorter sample lengths) in order to better define the 
correlation curves for small time delays. The time delay in the computer pro- 
gram was a multiple of the sampling rate. The results presented in this paper are 
based on four samples of recorded data at  the highest Reynolds number listed in 
table 1 and on one sample of recorded data for each of the other two Reynolds 
numbers. I n  presenting the data for R, = 60-8 the range of dispersion will be 
indicated wherever it is considered to be significant. 
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The differentiation was accomplished by using an operational amplifier in 
the differentiating mode which had adequate differentiating characteristics up 
to 10000Hz, i.e. the departure from linearity with frequency was 1 % 
at 10000Hz. The frequency response of the u and duldt channels at the input 
to the tape recorder is shown in figure 1. The fall-off indicated in the relative 
amplification for the duldt channel represents the departure from a linear re- 
sponse with frequency. The more rapid fall-off, from the 1 yo at 10000Hz 
noted above, is due to the characteristics of a Spencer-Kennedy low-pass 
electronic filter inserted in the dujdt channel in order to improve the signal-to- 
noise characteristics. It should be noted that for the recording of the second deri- 
vative a similar differentiating operational amplifier, and a matching electronic 
filter set at  the same cut-off frequency (5000 Hz) as for the first derivative were 
used. The data presented herein consist almost entirely of measurements in- 
volving the first derivative, and the signal-to-noise ratio for this quantity, includ- 
ing tape and digitizer noise, was 18 for the measurements made at the highest 
Reynolds number. This decreased to  a signal-to-noise ratio of 11 at the lowest 
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Reynolds number. In this connexion, however, the frequency response illustrated 
in figure 1 remained the same at the different Reynolds numbers. No correction 
has been made to any of the data for the non-linear response of the hot wire, 
nor for noise. An estimate of the effect of the non-linear response of the hot wire 
on moments of the velocity derivatives up to the sixth-order was made and found 
not to be too significant within the experimental dispersion. A more precise evalua- 
tion of this non-linear effect, as well as an estimate of the effect on moments 
higher than the sixth will require measured correlations of higher order than pre- 
sently available. 

The selected frequency response, in particular as it relates to the measure- 
ment of derivatives, is always an important consideration, and at best represents 
a compromise between frequency response and the ratio of signal to noise. 
The adequacy of the frequency response in the present investigation can perhaps 
best be assessed from the measurements of the second moment of the spectral 
distribution shown in figure 2, where P(n) is the normalized spectral function 
and n is the frequency. 
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FIGURE 2. Second moment of spectral distributions. 
0, XIM z= 48.5, R, = 60.8; m, XIM = 174.4, R, = 45.2. 

The second moment of the spectral distribution is directly related to the mean- 
square turbulent velocity gradient in that 

and 

__ 
1 (3' = ;. 

The values of h obtainedusing (1)  for the distributions at  R, of 60.8 and R, of 45.2 
shown in figure 2 were 0.345 and 0.645 cm, respectively. In the case of the higher 
Reynolds number the distribution was arbitrarily closed as indicated by the 
dashed portion of the curve. These values of h agree very well with the values of 
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0.348 cm and 0.635 cm obtained directly from the digitized data using (2). It is, 
therefore, reasonable to conclude that the frequency response of the duldt channel 
was adequate, at least for the measurement of the time derivative at  the two lower 
Reynolds numbers, and that no serious error was introduced at  the higher Rey- 
nolds number. However, measurements of the second-order time derivative 
at the higher Reynolds number would be of questionable accuracy. 

I I I I  I I I I I  I I I I  

n (Hz) 
FIQKRE 3. Phase shift aa a function of frequency. 0, u channel; ., du/dt channel. 

In addition to the frequency response, another aspect requiring attention is 
that of the phase characteristics of the two channels. This is particularly important 
when measuring the time correlation of simultaneously recorded signals. The 
measured phase angles with frequency for the u and duldt channels are shown in 
figure 3. A positive angle represents an advance in phase and a negative angle 
represents a lag in phase. The rapid variation of the phase angle with frequency 
for the duldt channel as compared with the u channel is due to the low-pass filter. 
The frequency is plotted on a logarithmic scale; however, it should be noted that 
on a linear scale the phase angle for the u-channel is linear with frequeiicy over 
most of the range, with increasing departure from linearity with decreasing fre- 
quency below 50 Hz. This departure is associated with the low frequency response 
of the a.c.-coupled hot-wire amplifier. On the other hand, the variation in phase 
with frequency for the duldt channel, due to the presence of the filter, does not 
remain linear over as great a range. It departs similarly at  the lower frequencies 
but does not remain linear to as high a frequency as for the u channel, departing 
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from linearity at  about 4000Hz. The aforementioned departure, a t  the lower 
frequencies, does not significantly affect the measurements of the correlations of 
derivatives since in such measurements the lower frequencies do not make a 
significant contribution. The differing phase characteristics of the u and duldt 
channels introduce a small relative time delay between the two channels which, 
from the linear variation of phase with frequency for the respective channels 
referred to above, is estimated to be 6 9 , ~ s .  This time delay will be referred to 
again in connexion with the measurement of the time correlation of u and duldt 
presented in § 4. 

3. Probability distributions and intermittency 
An important property attributed to the small-scale structure of turbulence 

at  large turbulence Reynolds numbers is the intermittency of periods of activity 
and non-activity of a turbulent property such as velocity, velocity gradient, 
dissipation, etc. In  the case of the velocity gradient, the degree of intermittency 
has been inferred from the magnitude of the fourth-order, 2, where 

The existence of intermittency of the small-scale structure (at lower Reyiiolds 
numbers in the range of the present studies) was considered by Batchelor & 
Townsend (1949) with the tentative explanation that the intermittency is a 
manifestation of spatial spottiness of the small-scale structure. Evidence of 
similar spottiness within the inner region of the boundary layer (distinct from 
the well-known intermittency of the outer region) was demonstrated by Sandborn 
(1959). In evaluating the degree of intermittency from the flatness factor of the 
firs* derivative, 2, an intermittency factor y is defined as a fraction of t,he time 
(or space) during which the periods of activity exist. It is assumed that a turbu- 
lent property p is zero during the periods of non-activity and that its statistical 
characteristics are unchanged during the several periods of activity. Thus, 

where Pturb is the property for the fully turbulent case (y  = 1) and pint corre- 
sponds &o the intermittent condition (y  < 1). The above relation leads to 

If it is assumed that the probability density distribution of p is Gaussian, then 

and, ingeneral, 

- - - 

= 15, [-&I = 105, 
(p2)4 turb 

- 

= 1.3.5. ... (2n- 1).  
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Table 2 gives the measured values of 3 for n = 3 to 8. Figure 4 presents the values 
of y obtained from the measured higher-order moments according t o  equations 
( 5 )  for several values of the turbulence Reynolds number. The maximum and 
minimum deviations of the four samples for R, = 60.8 are indicated in the figure. 

Gaussian R, z= 37.7 R, = 45.2 R, = 60.8 
- 
u: 0.521 0.493 0.400 0 
4 4.18 4.25 3.89 3 
4 7.53 6.73 4.97 0 

”l 151 121 8l.S 0 

- 

- 

- ”? 43.2 42.0 33.0 15 

u: 869 719 497 105 

- 

- 

TABLE 2 
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FIGURE 4. Interrnittency factor y at several turbulence Reynolds numbers R, as obtained 
from measured higher even-order moments. 0, y = 3/(14)~,,$; A, y2 = 1 5 / ( ~ : ) ~ ~ ~ ;  ., - - 

y 3  = 105/@)int. 

In the case of an intermittency as described above, the values of y obtained from 
the different moments should be the same. However, this is not the case and we 
conclude that either the probability distribution cannot be considered as Gaus- 
sian, or the intermittency is of a different character from that we have assumed, 
or in fact, that there is no intermittency under the conditions corresponding to 
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figure 4. Nevertheless, intermittencies may still be observed with sufficient high- 
pass filtering although they are not observed for the over-all signals. 

Figure 5 illuatrates the nature of the fluctuating longitudinal turbulent 
velocity u(t) and of its first and second time derivatives aulat and a2u/at2 at a 
point located at 48.5 mesh-lengths downstream of a 2.54 cm square-mesh woven 
grid at  a mean velocity of 15-18 m/sec. These data have been obtained from the 
analogtaperecordings afterdigitizing at  a rate corresponding t o  64 000 per second. 
The magnitudes of the velocities and their derivatives are shown in figure 5 
in arbitrary units. The recordings show no evidence of intermittency on the 
order of y from about 0.5 to 0.75 (as indicated by the data in figure 4) nob only 
for the velocity gradient au/at but even for the smaller-scale structure as indicated 
by a2ulat2. 

0 0.005 0.01 0.015 0.02 0.025 

t (see) 

FIGURE 5. Recordings of the longitudinal turbulent velocity u(t) and of its derivatives 
&/at and a2u/ata at the turbulence Reynolds number R, = 60.8. 

In view of the observed lack of intermittency in the present experiments in 
contrast to the measurements of Batchelor & Townsend, made under similar 
experimental conditions, we compare in figure 6 the actual values of $ and 
its variation over a limited range of R,. The measurements presented in figure 6 ,  
obtained by different techniques (the present experiments by digital methods 
and the earlier results by analog procedures), are in good agreement and show 
little variation with Reynolds number. It should be noted that the cut-off 
frequency may affect measurements of this type. As discussed in 5 2,  it does not 
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FIGURE 6. Flatness factors, 5, at several turbulence Reynolds numbers. 
m, Batchelor-Townsend ; 0, Frenkiel-Klebanoff. 

To evaluate the smaller-scale structure even further, the flatness factor of the 
second derivative was measured at the lower Reynolds number (R, = 37-7) 
to minimize the effect of the cut-off frequency, and the value of 5.3 was obtained 
which compares favourably with the value of 5-1 obtained by Batchelor & Town- 
send at a Reynolds number of 41.4. The difference between the measured $ 
and that corresponding to a Gaussian distribution (3 = 3 )  can, therefore, be more 
appropriately attributed for the present experimental conditions, to the non- 
Gaussian character of the probability distribution of the velocity gradient rather 
than to intermittency of the type characterized by equation (3) .  

It is well known that the probability density distribution of the longitudinal 
turbulent velocities is very close to a Gaussian distribution (Prenkiel & Klebanoff 
1965). On the other hand, as seen in figure 7, the measured probability density 
distribution of the velocity gradient 9( ut)  departs from a Gaussian distribution. 
The measurements were made at 48.5 mesh-lengths downstream of the 2.54 em 
mesh grid a t  a mean velocity of about 15.2rnlsec and a turbulence Reynolds 
number of about 61. The measured distribution represents an average over nine 
sample-distributions, each of approximately 12.5 seconds duration, sampled 
at a rate of 12 800 per second. The nature of the departure from Gaussianity is 
better illustrated in figure 8 where the measured value of u: L?( ut) is presented as a 
function of ut and compared with a corresponding curve for a Gaussian distribu- 
tion. It can now be readily seen (from figures 7 and 8) that the contribution to the 
skewness factor, 2, is due mainly to large positive values of ut although the 
small negative values of ut have a higher probability.? The value of the skewness 
factor of the derivatives obtained from the probability distribution 

up = U ; ~ ( U ~ )  d ~ ,  = 0.410 
- J:: 

t It should be noted that, if we assume the turbulent field to move like a frozen pattern 
with the mean velocity (Taylor’s approximation) then &/ax = - (au/at)/U and thus the 
space-skewness factor has a sign opposite to that of the time-skewness factor. 

I I I I I I 

- 
W 

I 



192 

0.5 

0.4 

0.3 

s” 
K 

0.2 

3. N .  Frenlciel and P. S. Klebanofl 

0 
0 

1 2 3 4 

“t 

FIGURE 7. Comparison of the measured probability density distribution of the non- 
dimensional velocity gradient, ut, with it Gaussian distribution. 0, measured ; --, 
Gaussian. 
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FIGURE 8. Comparison of the measured third moment of the probability density distribu- 
tion of ut with the third moment of a Gaussian distribution. 0, measured; -, Gaussian. 
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is in good agreement with the valueg = 0.409 obtained directly from the digitized 
data. 

The concept of intermittency of the small-scale structure of turbulence has 
led to the proposition, a t  higher Reynolds numbers, of a randomly intermittent 
dissipation field characterized by a log-normal probability distribution density 
for the dissipation (Kolmogoroff 1962, Obukhov 1962, Gurvich & Yaglom 1967). 
For the nearly isotropic turbulent field downstream of a grid, the dissipation is 
represented fairly well by the measured 3 when assuming the validity of the 
Taylor approximation. While the present experiments are made at  much lower 
Reynolds numbers than those a t  which a log-normal distribution may be ex- 
pected to apply, it is of interest to make this comparison in order to ascertain how 
well such a distribution approximates the measured data and to illustrate the 
intricacies of such a comparison. 

The log-normal distribution for a property p can be expressed as 

with the related averages 
- 

p = exp (p + +a2) and p2 = exp (2p + 2g2) 

and where the mean p = c p  and the standard deviation a = [(lnp - , u ) Z ] * .  

In the present case, for p = u:, we have 

(6) p = - 1 g 2  and therefore, 2 

and a2 = In (PZ, = In ($1. (7) 

Figure 9 presents a comparison between the measured cumulative probability 
density distribution of In u: (for the same data as presented in figure 7) and two 
log-normal distributions which in this figure are represented by straight lines. 
The log-normal distribution represented by the solid line was obtained by 
determining its mean p and its standard deviation a from the measured flatness 
factor (8 = 3-975) obtained directly from the nine samples of the digitized data 
using equations (6) and (7). The mean and the standard deviation for this dis- 
tribution do not, however, correspond to the actual mean and standard devia- 
tion of the measured distribution of In u:. The dashed line, on the other hand, 
represents a more appropriate log-normal distribution since it has the same fi 
and a as the measured distribution. A somewhat clearer comparison between the 
measured data and the log-normal distributions is given by presenting the 
probability densities B(ln u!) as functions of In ug in figure 10. These two figures 
clearly indicate that the log-normal distribution does not adequately character- 
ize the measured results under present conditions. 

13 F L M  48 
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In C U 3  
FIGURE 9. Comparison of the measured cumulative probability distribution 

of In u; with two log-normal distributions. 

In ( U Z )  

FIGURE 10. Probability density distributions corresponding to figure 9. 
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4. Correlations 
The degree to which the probability distribution is Gaussian as well as the iso- 

tropy and similarity conditions for grid turbulence have received considerable 
attention. Most of the studies on this subject have been limited to the considera- 
tion of the character of the longitudinal turbulent velocity components and a 
larger scale structure. In  the present paper an attempt is made to extend these 
studies to a smaller scale structure as reflected by the behaviour of the turbulent 
velocity gradient. In this connexion we shall refer to correlation of different 
orders of the derivatives of turbulent velocities. 
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FIGURE 11. Comparison of the measured second-order correlation of turbulent velocities 
R(h)  with the second-order correlation of turbulent velocity gradients T:;$h). 0, R(h) ; 
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Figure 11 compares the measured second-order correlation of the turbulent - 

velocity gradient 

G 
with the second-order correlation of the turbulent velocity 

u(tjU(t + h)  

U 2  
R(h) = T$t(h) = - 

13-2 
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as functions of the time interval h. The data presented in the figure were ob- 
tained at  48.5 mesh-lengths downstream of the grid and at a mean wind velocity 
of 15-18 mlsec. The comparison exhibits the markedly different behaviour of the 
two correlation curves. In  contrast to the correlation curve for the turbulent 
velocities, the integral of the correlation curve for the turbulent velocity gradients 
cannot be used to characterize a scale of turbulence since this integral should be 
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FIGURE 12. Second-order correlation between the turbulent velocity 
and its gradient. 0, Tk:( --I%); 0, - Z'$i(h). 

equal to zero. In  fact the curve illustrates this behaviour. Figure 11 also in- 
cludes a comparison between the correlation Tt:(h)  measured directly and its 
value obtained by numerical differentiation of the correlation R(h) according to 
the relations 

azqh) a 2  u(t) u(t + h)  1 au(t) au(t + h) 
ah2 a t2  a~ at at 

Ti;;(/&) = - 

-- _ _ -  [ ~- zLz I = - = -  
- 

(8) 
82B(h) a2R(O) u2 a2R(h) - = - ___ - . 

ah2 I ah2 (au/at)z ahz 

Although the accuracy of a double differentiation is not too satisfactory, the 
agreement between the two methods provides a fairly good check of the data. 
In  performing the numerical differentiation the use of the data obtained with the 
higher sampling rate was required. 
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Figure 12 shows the measured second-order correlation between the turbulent 
veloiity and its gradient 

u(t) au(t + h ) p t  
(u2)4 [(%@Ty]t 

TA;i(h) = - 

for the same experimental flow conditions as for the results given in figure 11. 
An important consideration in such measurements is the relative phase shift 
between the two recorded signals (in the present case between &/at and 
the u channels). The insert in figure 12 presents the data as measured before 
taking into account the phase shift. In  this insert Tk i is presented as a function of 
Uh,IM, where h, = h+rp with rp representing the relative phase shift. For a 
stationary field of turbulence a necessary condition is 

u(t)au/at(t) = 0 or T:;:(O) = 0. 

Under such a condition the measured value of h, corresponding to 9"ki = 0 
should give the relative phase shift rp. The phase shift, rp, obtained in this manner 
is 71 ,us (corresponding to Uh,/M = 0.0425), which is in good agreement with the 
value of 69 ,us estimated from direct measurements of the phase characteristics 
referred to in 5 2. It is thus reasonable to consider the turbulent field for the present 
purposes as being stationary; however, a more thorough analysis of this question 
would require more extensive studies. 

If we assume the Taylor approximation to be valid and that the turbulent 
field is isotropic, then the correlation curve Tki (h)  should be antisymmetric: 

Ta:i(h) = - Tki( -h). (9) 

A comparison between the values of Ta;i(h) and Tki( - h) is made in figure 12 
after taking into account the phase shift obtained from the measured correla- 
tions. This comparison indicates that the isotropic condition (9) is well satisfied. 
It should be noted that under the same experimental conditions the third-order 
correlations of the longitudinal turbulent velocity fluctuation did not exhibit 
the necessary antisymmetric condition (Frenkiel & Klebanoff 1967 b) ,  indicating 
that the larger scale structure is non-isotropic. However, it should also be noted 
that under similar conditions Van Atta & Chen (1968) found that the third-order 
correlations do satisfy the antisymmetric isotropy condition fairly well. Van 
Atta & Chen attribute the difference in their measurements of the third-order 
correlations of velocities, as compared to the present authors, to the differences 
in the low frequency response of the measuring equipment. It should be noted 
that it is not reasonable to  expect that the measurements exhibit a greater degree 
of non-isotropy by eliminating the lower frequency fluctuations which for grid 
turbulenceare non-isotropic. An estimate was also made by appropriate numerical 
methods of the correction for the response in amplitude and phase shift at lower 
frequencies and no significant effect was observed. In  this connexion, Helland 
& Stegen (1970) have shown that the difference in the low frequency response 
of the measuring equipment is not the correct explanation for the observed 
differences in the third-order correlations. 

While there is no reason why the decaying field of turbulence should be iso- 
tropic, there may still be some question as to the degree of non-isotropy. In  this 
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context we shall examine the degree of isotropy of the smaller scale structure in 
greater detail as evidenced by the correlations TTln(h) and T,":F(h) which should 
be equal in an isotropic field of turbulence. In  figures 13 and 14 such a comparison 
is made for m + n = 3 and 5 ,  respectively, for the three different experimental 
conditions listed in table 1. The maximum and minimum deviations for the 
four samples a t  the highest Reynolds number are not shown in these figures 
inasmuch as the individual samples exhibited the same degree of comparability 
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FIGURE 13. Third-order correlations of turbulent velocity gradients Tt i (h)  

as the averages which are given in the figures. The differences between the 
correlations T t :  and TT4 as compared to the correlations Tk: and T?:, respec- 
tively, are rather small and there is no reason at  present to consider them as being 
significant. We should, however, note that the relatively larger deviation of 
Tti at Uh/M = 0.140 for R, = 60.8 was consistently observed. Figures 13 and 14 
show that the moments 3 = Tt:(O) = Tk2,(0) and ? ( O )  = TT2,(0) = !Z'ti(O) are 
decreasing with increasing Reynolds number. In  figure 15 the values of 2 are 
compared with those obtained by Batchelor & Townsend (1947). Their values 
are somewhat lower and also indicate a decrease with increasing R,. 
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Assuming the Taylor approximation, equation (8) can be rewritten as 

Similarity for the correlation curve as a function of Uh/A gives the relation 

thus showing that, with h as a characteristic length-scale, similarity of the 
velocity-gradient correlations Ti: :( Uh/A) requires similarity of the velocity cor- 
relations R( Uhlh). Figure 16 shows the correlations R( Uhlh) and T t  !( Uh/h) for 
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FIGURE 14. Fifth-order correlations T::(h) and e ; : ( h )  for 
three Reynolds numbers. 0, T$; ;  0, T:;. 
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FIGURE 15. Skewness factors, u:, at several turbulence Xeynolds numbers. 

, Batchelor-Townsend ; @, Frenkiel-Klebanoff. 

the different Reynolds numbers R,. The velocity-correlations appear to be similar 
only for the relatively smaller scale structure as evidenced by their values for 
Uh/A smaller than 1. It should be noted that the value of Rh is not necessarily the 
determining parameter since the effect of the decay is also involved. Similar 
behaviour for the velocity correlations has also been observed by Stewart & 
Townsend (1951) a t  an approximately constant Reynolds number at  different 
stages of decay. However, the velocity-gradient correlations Tk: exhibit a some- 
what greater lack of similarity for the smaller scale structure. 

1 7 3 4 5 6 7 S 

UhlA 

FIGURE 16. Evaluation of similarity of second-order correlations of turbulent velocities 
R(h) and of turbulent velocity gradients T$!(h), with microscale A, for different Reynolds 
numbers R,: A, 37,7; a, 45.2; 0, 60.8. 
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It is also of interest to consider the similarity for the correlation curves 
Tk:( Uh/r) where 7 is the Kolmogoroff length (v3/s)i and E: is the rate of dissipa- 
tion per unit mass. This gives the relation 

and, with the isotropic relation for the rate of dissipation, one obtains 

It is thus seen that the restriction that similarity be satisfied for both velocity 
correlations and velocity-gradient correlations is not applicable with the Kolmo- 
goroff length as the characteristic scale as long as v/h is not constant. 

- 0.2 I I I I I I I J 
0 I0 20 30 40 50 60 70 80 

UhlT 

FIGURE 17. Evaluation of similarity of second-order correlations R(h) and T$;(h), with 
Kolmogoroff scale 7, for different Reynolds numbers. See figure 16 for symbols. 

Figure 17 presents the two correlation curves R and Ti:: as functions of Uh/r 
a t  the three Reynolds numbers. As expected the velocity correlations are more 
dissimilar with 7 as a length-scale than with A, but on the other hand, the velocity 
gradient correlations exhibit a greater degree of similarity. Within the experi- 
mental uncertainty it is difficult to evaluate the small departures from a single 
curve at  small values of Uhlr. 

Figure 18 presents the third-order correlations T2,:: and T:;; as functions of 
Uh/r a t  the three Reynolds numbers, and figure 19 presents a similar plot for the 
fourth-order correlation T2,: ;. These last two figures also indicate a considerable 
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degree of similarity particularly for the larger values of Uh/v .  It is interesting to 
note that if there is a variation of the third- and fourth-order moments 

- - 

T?,(O) = T$I(O) = u3 and T2,;:(0) = u: 

with Reynolds number, then the similarity at  very small Uh/v cannot be expected. 
Thus, any model of a small-scale intermittency which results in the variation of 
such moments with the Reynolds number cannot be fully consistent with the 
similarity condition, and therefore the curves in figure 18 are not extended to the 
origin. 
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FIGURE 18. Evaluation of similarity of third-order correlations 5!'ti(h) 
and Tk;(h) with 7. See figure 16 for symbols. 

It is also of interest to examine the similarity of the two dissipation spectra 
shown previously in figure 2. These spectral data, with the non-normalized spec- 
tral function # ( K )  = ~ F ( K )  and K = 2 m / U  are replotted in figure 20 with 7 and 
v as effective scales, where v is the Kolmogoroff velocity (ve)f. This representation 
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gives a constant area under the curves which for an isotropic turbulence would 
be equal to 1/15 and in the case of similarity would yield a single curve over the 
whole range of K values. It is seen that there is some departure from this condition 
and it appears Ghat the spectrum may provide a more sensitive criterion for 
similarity than the correIation. 
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FIGURE 19. Evaluation of similarity of the fourth-order correlation 
Tti(h) with 7. See figure 16 for symbols. 
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FIGURE 20. Evaluation of similarity of dissipation spectra with 9 for two 
Reynolds numbers, - - 0 - -, R, = 45.2; -0-, R, = 60.8. 
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The non-Gaussian nature of the probability density distribution of the turbu- 
lent velocity gradient has been discussed in 0 3. We shall now consider the degree 
to which the correlations reflect this non-Gaussianity. 

If we assume that the two-dimensional probability distribution of the velocity- 
gradient is Gaussian, then the fourth-order correlations are related to  the 
second-order correlations by the expressions 

T$i = T?: = 3T3: and T2,:2, = 1 + 2(T2:)2. (12) 
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FIUURE 21. Comparison of the measured fourth-order correlations Ttt(h),  at R,\ = 60.8, 
with the correlation obtained for st Gaussian distribution of turbulent velocity grstdien ts I J ~ .  

In figure 21 we compare the measured fourth-order correlations for R, = 60.8 
with those obtained from equations ( 1 2 ) .  The disagreement is in marked contrast 
to a similar comparison of turbulent velocities (Prenkiel & Klebanoff 1 9 6 7 ~ ) .  
It may be noted that the measured values of T$: and T?: are in close agree- 
ment in support of the isotropy condition referred to previously. Let us now ex- 
amine the non-Gaussianity by assuming that the two-dimensional probability 
density distribution is of the Gram-Charlier type according to the equation 

j+k 

Y(ut (% ut( t+h))  = Y o ( u t ( t ) ,  ut( t+h))  c A j , k q , k ( u t ( t ) ,  ut(t+h)): (13) 
0 
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where 8, is the Gaussian distribution 

and where Hj,k is a Hermite polynomial of two variabIes and Aj,k are coee- 
cients which can be defined in terms of the higher-order correlations TTln (Kamp6 
de FBriet 1966; Frenkiel & Klebanoff 1967a). Considering now the fourth-order 
non-Gaussian probability distribution ( 1 3 )  with j + lc = 4 ,  we find such correla- 
tions as 

T t :  = 3TT:+9T:::Tt2,+3Tk!- 12(T:;;)3- 18T:;:, 

T t :  = 33(4Ti;: + 1 )  + 18[l + 2(Tk:)2] Tki  + 36T:;:Tk:, 

(15 )  

( 1 6 )  
- 

T494 1.1 - - 6v4 t +  48Tk:(T?: + T?!) + 3 6 [ 1 +  2(Ti:)2]  T2,:2, 

- 120(T~:)4-360(T2~)2-45 .  (17) 

The above correlations are expressed in terms of measured lower-order correla- 
tions, meaning measured correlations for m + n = 2 , 3  and 4. 

Figure 22 compares the measured fifth-order correlation Tt2,, for R, = 60-8, 
with the corresponding correlation obtained according to equation (14). The open 
circles denote the average values of four samples with a range of deviation as 
indicated. The correlation curve corresponding to the fourth-order non-Gaussian 
distribution has been computed using the average values of the lower-order 
correlations. In  the case of a Gaussian probability distribution these correlations 
(like all other odd-order correlations) would be zero. The fourth-order non- 
Gaussian distribution thus results in a much better approximation to the 
measured correlations with fairly good agreement for values of Uh/M > 0.04. 
The departure of the measured correlations from those obtained according to 
( 1 4 )  €or Uh/M < 0.04 is reflected in the ratio of the moments u:/vz, which in the 
case of the fourth-order non-Gaussian distribution should be 10 as compared to 
the measured ratio of about 12.5 (as seen from table 2) for R, = 60.8. 

A similar comparison is made in figure 23 for the sixth-order correlation TT:. 
The measured correlation is compared with the correlation corresponding to a 
Gaussian distribution 

_ _  

T t :  = 3Tk:[3 + 2(T:;:)'] (18 )  

as well as with that corresponding to the fourth-order non-Gaussian distribution 
given by equation (15 ) .  Comparison of the measured T t :  with that obtained for 
the fourth-order non-Gaussian distribution exhibits a behaviour similar t o  Tt2, 
with somewhat closer agreement at the small values of UhIM. 

We may note that the data presented in figures 22-23 were obtained using 
digitizing rates of 64 000 per second with sample lengths of approximately 2.6 
seconds. The maximum and minimum deviations in values of correlation ob- 
tained from four different samples of data are indicated in the figures. Similar 
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data (not presented here) were obtained with digitizing rates of 12 800 per 
second and sample lengths of about 12.5 seconds. However, the deviations, from 
sample to sample, obtained with the slower digitizing rates were essentially of the 
same order, and the average values were approximately the same. 
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FIGURE 22. Comparison of the measured Tt:(h), at R, = 60.8, with the correlation obtained 
for a fourth-order non-Gaussian probability distribution of ut.  --, fourth-order Gaussian ; 
0, experimental. 

In  the case of the fourth-order non-Gaussian probability distribution of u,, 
equations (14)-( 17) yield (for h = 0) the following relations between the moments 
of different orders : _ -  

u;/u; = 10, (19) 

U : / ( U : - ~ )  = 15, (20) 

u ~ / u ;  = 105, (21) 

uf/(23-5) = 105. ( 2 2 )  

_ -  
_ -  

~~ 

It should be noted that except for the ratios of odd-order moments, equations 
(19) and (21), the above values are the same as for a Gaussian distribution; 
however, the individual moments 2 do not have to be Gaussian. Table 3 coinpares 
the numerical values given by equations (19)-(22) with those measured a t  the 
three turbulence Reynolds numbers. 
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Similarly, for the sixth-order non-Gaussian probability distribution of u,, the 
following relations are obtained: 

- 
~f / (42 -30$+45)  = 7. (24) 

The ratios in (23) and (24) have the same numerical values for the fourth-order 
non-Gaussian distribution. However, the sixth-order non-Gaussian distribution 
does not give the same numerical values for the ratios in (19)-(22). 

20 P k  
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FIGURE 23. Comparison of the measured !Pl?(h), at R, = 60.8, with the correlations 
obtained for a Gaussian, and for a fourth-order non-Gaussian probability distribution 
of ut. - - -, Gaussian; -, fourth-order non-Gaussian; 0, experimental. 

It is of interest to note that, except for the possible effect of frequency response 
referred to earlier, the trend of the moments in table 2 with Reynolds number 
is in the opposite direction from that required by various models of the small- 
scale structure (Corrsin 1962; Tennekes 1968) which require an increasing trend 
with Reynolds number. Inasmuch as high Reynolds number data over a consider- 
able range are required for proper evaluation, attempts to make such an evalua- 
tion have necessarily used available data from a variety of flow configurations 
(grid turbulence, jet, mixing region, atmospheric turbulence, etc.). However, the 
possibility does exist that the statistical structure in the various flow configura- 
tions may indeed be different. It is therefore desirable that evaluation of this 
behaviour be carried out for each flow configuration to determine whether such 
behaviour is universally characteristic for turbulent fields. 
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It may be noted that the ratios of moments listed in tables 3 and 4 decrease 
with increasing turbulence Reynolds number. Although it is premature t o  make 
any definite conclusions, these ratios indicate an apparent trend toward better 
agreement with the values given by the non-Gaussian probability distributions 
at higher Reynolds numbers. 

Fourth-order 
R ,  = 37.7 R, = 45.2 It, = 60.8 non-Gaussian _ _  

u 5 p  14.5 13.6 12.5 10 2 L -  
uycv: - 2) 19.8 18.6 17.5 15 
313 291 245 205 105 t t -  
$/( zu: - 5 )  258 205 179 105 

TABLE 3 

Sixth-order 
R, = 37.7 R, = 45.2 R, = 60.8 non-Gaussian _ _  

v y ( u ;  - 5qj- 30.7 28.4 27.5 21 
u:/(4q - 3 0 e  + 45) 9.40 8.42 8.25 7 
- 

TABLE 4 
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